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Abstract

A trace-driven model is used to study the effects of various schedulers
and deadlock control algorithms in & general - purpose operating system.
Jobs' requests for resources are extracted from a production loaed and
used to drive a detailed simulation program. The simulation results show
that the preemptive deadlock control algorithms give consistently good
performance in terms of CPU utilization. The bankers algorithm and the
detection and recovery deadlock control algorithms are susceptible to
"knotting" (holding of resources by a blocked process) when there is no
preemption, but their performence can be improved significantly by 1)
allowing & moderate amount of preemption end 2) by forcing the Jjob scheduler
to 1imit the number of jobs competing for resources. When "knotting" is
limited by either of the above methods, non-preemptive job scheduling im-
proves CPU utilization. This paper extends and develops previous work and
sumarizes the interaction between some characteristics of job schedulers

and deadlock control algorithms.



A variety of algorithms for dealing with the deadlock problem in
operating systems have been proposed and compared qualitatively ( [l] [2] [:5] Ea ).
This paper reports & quantitative study of the effects of deadlock control

algorithms and job schedulers on CPU utilization.

CPU utilization 1s compared for two job loeds of equal resource re-
quirements. The actual job load had a number of interactive Jobs which
are reflected in an interactive model. Results from experimente with the
interactive model are compared to results from a batch model which uses
the same Jobs as the 1nteractive model but treats all Jjobs as 1f they were

betch Jobs.

Trace-driven modeling ([5] [6] [7]) is the vehicle used@ for this study.
It is a simulation technique based on a detalled Job load extracted from a
production system, and is completely and historically described in [6] It
has also been used to study other system algorithms such as CPU scheduling
([5] [7]).A preliminary study of deadlock control algorithms in a batch environ-
ment, considering only the effect on CPU utilization, appears inl:8]. The

more sensitive measure of response time for interactive jobs was considered
in [9]

This paper updates results from[8:| and combines previous work ([:5:][9:]) to
develop new results on the positive effects of preemption on certaln dead-
lock coutrol algorithms. TFurther experiments are also presented which
support conclusions in [9] concerning the need for an intelligent job sched-

uler preceding the deadlock control algorithm and the general good performance




of preemptive deadlock control algorithms. The detalls of experimental
precedures used to obtain the results reported in this paper have been pre-

viously reported in several papers ([5][6][7:' [8:] [9]) and are therefore only

briefly sketched in this paper.

TII. The Model and Environment

Trace-driven modeling is a technique whereby a recorded trace of
system activities 1s directly used to define the environment and work-
load for a model of a computer system ([6]) Trace~driven modeling is a
form of simulation which can be accurately valldated. The model is vali-
dated by comparing its performance with the performance of the system
whose data was recorded. Further information of trace-driven modeling in
general can be found in [:6] and very detailed information on this particular

trace-driven modeling effort is in [5]

A CDC 6600 ([lO]) was used to gather the trace data. The locally writ-
ten operating system UT-2 ([ﬂ [l]—_._‘ [12])ca.n support up to 1> user Jobs and
% gystem Jobs concurrently. The user Jobs have five peripheral processors

for input/output, swapping, and system control functlons.

The UT-2 system is a multiprogramming system that supports a mixed
batch (5000 to 6000 jobs per day) and interactive (35 to 45 users simul-
taneously) load. Measurements used in the model were taken over a rela-
tively long 30 minute period end a shorter 3 minute period with 1400 and

220 interactions respectively from the interactive users.




Two models are used to ctudy the system. The first and earliest
model <[§)[§]) treats all jobs in the system as batch jobs. This model will
be referred to as the batch model. The interactive jobs are included in
this model in terms of thelr resource requirements, but they are not given
any special priority and are not preempted for think time. That is, think
time 1s assumed to be zero. The batch model was & reassonable model for
the UT-2 system at the time the measurements were taken. Early versions
of the system were completely batch oriented. A large majority of the
users only used the batch system. The interactive system had only batch
versions of language processors and utilities available to 1t. Figure 1

(without the interaction complete path) is an illustration of job processing

in the batch model.

When the interaction complete path is included, Figure 1 shows a model
of job processing in the Interactive model. The interactive model is simi-
lar to the batch model in all respects except: 1) Interactive jobs are
swapped out while waiting for input. 2) Think times are taken from the
trace data and 3) The job scheduler treats interactive jobs in a slight-
ly different way (explained below) than batch jobs. More detailed informa-

tion on the interactive model may be found in Eﬂ.

The two Job schedulers examined in the models are the preemptive scheduler
(SP) that preempted jobs whenever less expensive jobs arrived in the job
queue and & non-preemptive scheduler (SNP) which would not preempt at all
in the batch model and limited preemption to interactive Jobs in the inter-

active model. The gctual scheduler used in the UT-2 system is very similar



to the preemptive scheduler ([}i]). Both the preemptive and non-preemptive

schedulers had the following cheracteristics: 1) A cost was aesigned

to each Job equal to the product of its current memory requirements and
the eamount of CFU time it needed before completing its current transaction.
2) The Jjobs were sorted in order of increasing cost. 3) The Jobs were
scanned least - cost first and any job that would fit into the available

memory was selected. 4) At most 4 interactive jobs could be selected.

As in previous studies( [5] [@] [9]) four deadlock control algorithms are
studied. The resources considered by the deadlock algorithms are central
memory and peripheral processors. Immediate preemption, IP, 1s the technique
used in the UT-2 system. If a Job's request for memory cannot be satisfied
immediately, the Job is swapped out. Complete assignment, CA, prevents
deadlocks by 1lnitially assigning to a Jjob all of the resources 1t will ever
need. Detection and recovery ([?]), DR, counsists of running & deadlock
detection algorithm whenever a Jjob's request for additional resources can-
not be satisfied and recovering if deadlock is detected. The "bankers
algorithm" ([F]), BA, avoids deadlocks by assigning resources only when the

system can find at least one sefe sequence in which 1t can run all Jjobs.

ITI. Validation

In order not to dlstort the load presented to the simulated job sched-
uler ([6][9]), an initial queue of 55 jobs was selected from the pool of known
Jobs. The total amount of processing time used by the initial queue is
stored as a threshold. Whenever the remaining processing in the simu-
lated input queue drops below this threshold, new Jjobs are selected from

the unused jobs.




Table 1 presents validation information for the relatively long

measurement period. The first four columns represent data used in [ﬁ]. The

actual and simulated interactive system performence measures (first two
columns) agree to within 3.5 ©/o, with the measure most important here
(CPU utilization) in agreement to within 1 ©/o relative error. The third
column displays simulation results wlth the overhead associated with the
software event recorder removed, showing that its effect was a degradation
by approximately 2 ©/o, The fourth column gives results from a simulation
with a different random ordering of the Jobs, and again displays relative
deviations of about 2 0/o. The fifth column through the seventh column
present the simulated batch system performence measures ([ﬁ]). Columns five
and six correspond well to the simulsted interactive system performance
measures lu colums two and three showing a slight improvement in perfor-
mance due to fewer preemptions resulting in less overhead. The random
ordering of the Jobs in column seven was different from the ordering re-
flected in the results of the fourth column. The processing threshold for
the initial set of jobs was about 11 ©/0 ©Of the threshold used in the ini-
tial ordering. This meant that the permuted betch model hed a smeller num-
ber of Jjobs to consider throughout the run, and therefore the permuted batch
model generated a lower degree of multiprogramming and utilized less memory.
Even with this unfortunate random choice of the initial set of jobs, the
model still agreed with the actual system in CPU utilization to within

2.5 0/o. We conclude from this information that we have constructed a

valld and stable simulation model of the actual system.



The chort measurement period counteins too few interactions end jJoho
to allow & convincing velidation. Table 2 glves the comparison between
sctual and simulated system performance. The results hased on the short
period must be taken as showing trends only end eas lending credence to

the validated dats from the longer measurement perlod.

IV. Results

Table 3 gives CPU utilizations for each combination of schedulers
(SP and SNP),deadlock control algorithms (IP, CA, DR and BA) and models
(interactive and batch) for the long measurement period. Taeble 4 gives
the same set of CPU utilizetions for the short measurement period.

In the interactive model in Table 3, the performance of each
deadlock algorithm improved from 3.03% to 8.66% when the non-preemptive
scheduler replaced the preemptive scheduler. The improvement in CPU
utilization coincides with the decrease in overhead and delays caused by
swapping. However, it is importent to note that the non-preemptive scheduler,
SNP, still swaps Jobs 1n the interactive model due to the requiremeunts for
reaconable response time. (A parallel study ([9]) has shown that response
times are worse using the SNP scheduler with the interactlve model than
with the SP scheduler). The batch model in Teble 3 shows a performance
improvement similar to the improvement in the interactive model using the
IP and CA deadlock control algorithms with the SNP scheduler. However, the
non-preemptive scheduler yields less CPU utilization than the preemptive
scheduler using the DR and BA deadlock algorithms. This loss of CPU
utilization for the detection and recovery algorithm (6.01% ) and the bankers
algorithm (18.40%) 1s not reflected in the batch model for the short

measurement period in Table &4,




The significant cheracteristic which appeared in the DR and BA dead-
lock algorithms with the non-preemptive scheduler was the appeasrance of the
"knotting" phenomenon. Knotting is the degradstion of rerformance brought
about by the tying-up of resources by Jjobs which are not able to make
effective progress ([é])-The deadlock algorithm DR and BA consider memory
and peripheral processors as thelr non-preemptable resources and the number
of peripheral processors being held by jobs requesting central memory is

en indication of knotting. Table 5 shows that as the number of jobs holding

peripheral processors snd walting for central memory increases, the CPU

utilization decreases.

In the experlments in Table 35, the interactive model seems to have
too much preemption activity using the preemptive scheduler. The performance
was improved by using a non-preemptlve scheduler and only preempting for a
limited number (a maximum of L4 at one time) of interactive Jobs. The decrease
in preemption overhead overcame any tendency for the system to knot using
the DR and BA algorithms. The performance of the batch model using the
preemptive scheduler was almost equivalent to the interactive model. The
non-preemptive scheduler was strictly non-preemptive in the batch environ-
ment and the lack of job preemption allowed knotting to dominate the resource
environment for the DR and BA deadlock algorithms and more than compensate
for eny galns due to reduced overhead that were apparent in the IP and CA
deadlock algorithms. Only a modest amount of preemption seemed to be needed
to deter knotting since the interective Jobs averaged less than 1 interaction
per second during the long measurement period. Statistical techniques ([5])

used to analyze the contributions of the deedlock control algorithms (IP, CA,



DR, BA),Jjob schedulers (5P, SNP), and models (betch, interactive) show

that almost 60 ©/o of the observed varistions in CPU utilization are
accounted for by the intersctions betwecen variables. This large cross

term indicates the significance of those interactions in designing an
operating system. The need for preemption in the DR and BA algorithms is
very unfortunate since these algorithms are usually used when preemption

1s difficult to achieve. The short measurement period in Table 4 was too
short for lmotting to develop. dJobs finished and resources were freed at

a very rapid rate. Therefore, the non-preemptive scheduler always performed

better than the preemptive scheduler.

In the batch model, some perturbations of the bankers algorithm and
the detection and recovery algorithm were tried using the non-preemptive
scheduler in an attempt to achieve better performance; Knotting had led
to deadlocks in the detection and recovery algorithm. While only one
deadlock was detected using the premptive scheduler, 1% deadlocks occurred
with the non-preemptive scheduler. The recovery procedure when a deadlock
was detected was to preempt the resources currently held by the last Job
that caused the deadlock. When the recovery procedure was changed to
preempt all of the Jobs that held resources contributing to the deadlock,
the CPU utilization increased from 61.40% to 67.45% using the non-preemp-
tive scheduler.

An alternative technique for the bankers algorithm consisted of
treating the peripheral processors requesting memory as preemptable resources.
The batch model was changed to place the peripheral processor progrem that
requested memory at the end of the queue of peripheral processor prograums.

The new technique returned an increase in CPU utilization of 9.0275 over
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the CPU ut

11ization of 18.15 /o presented in Table 3 for the non-preemptive

scheduler.

In an attempt to reduce the contention for resources, the meximum
number of user Jobs is reduced in steps of 2 from 13 to 3 Jobs. Three
system Jobs are always active. Table 6 shows the results of this experi-
ment. The bankers algorithm steedily increased its performance under the
non-preemptive scheduler until only a meximum of 3 user Jobs were allowed.
As a comparison, the seme experiment was run using the preemptive scheduler
with the lmmediate preemption deadlock control algorithm. The results of
that experiment show little change in the CPU utlilization with a barely
preceptable dovmward trend when a maximum of 5 user Jjobs was allowed.
Clearly,intelligent scheduling that removes congestion will aid the bankers

algorithm. Similar results were found in [é].

The CPU utilizations of DR and BA reported here are markedly
superior to those reported in the preliminary study ([ﬁ]). This is due
both to the use of a model that is more comprehensive in its resolution of
Jjob characteristics and to the correction of an invelid implementation
of DR and BA. Precise informetion on resource requirements, availsble
and utilized in this trace-driven model, is highly favoreble to the
performance of CA and BA. Such precise informstion on resource re-
Quirements 1s not often available in normal production environments.

The cost of preempting Jobs on the system modeled in this study is

very small since preempted jobs are swapped to extended core storage.
The ease of preemption certalnly helps the IP deadlock algorithm. The
batch model was changed to assess the system a penalty in CPU time when-

ever a Job was preempted in order to make preemption more expensive.



Two experiments were conducted with cystem penalties of 100 milliseconds
and 1 second using the SNP scheduler and the IP deadlock algorithm.

CPU utilizaetion dropped from T77.98 0/o to 76.58° /o for the 100 milli-
second penalty and to 60.290/0 for the 1 second penalty. One second of
CPU time is a tremendous amount on a CDC 6600 and the performance of the
IP deadlock mechanism under a penalty situation indicates that preemption
should certainly be considered for deadlock control even 1f the cost is

very high.

V. Conclusions

The simulation results presented here support the following conclusions.
Non-preemptive job schedulers combined with the immediate preemption and
complete assignment deadlock control algorithms yileld better performance
in terms of CPU utilization than preemptive job schedulers. The detec-
tion and recovery algorithm and the bankers algorithm are very suscep-
tible to knotting when no preemption is allowed. - A moderate amount of
preemption can greatly improve the performance of both the detection
and recovery algorithm and the bankers algorithm. The performance of
deadlock control algorithms that are subject to knotting can also be
improved by limiting the number of jJobs competing for resources. CPU
utilization can be improved in the detection and recovery algorithm
by preempting all of the jobs that cause & deadlock rather than preemp-
ting the minimum number of Jobs. The preemptive deadlock control

algorithm gave consistently good performence even when a penalty for

preemptlion was accessed.
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Table 3

CPU UTILIZATION ( PERCENT)
Long Measurement Period

Interactive Model

IP CA DR BA

69. 32 6k, 19 67.63 66. 81

77.98 T1. 30 75.85 69. 8l
Batch Model

IP CA DR BA

67.88 65.56 67. 41 66.55

77.98 Th, 31 61. 40 48,15
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SNP

5P

SNP

Table

L

CPU UTTILIZATION (PERCENT)
Short Measurement Period

Interactive Model

IP CA DR BA
he,31 40,83 4o, 14 38. 83
48,13 45, 66 47,03 k5,12

Batch Model

IP CA DR BRA
L, 57 k2,62 43,67 42,80
50. T3 Lo, 33 bL7.71 45, 62
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